Morphometric Studies on the One-Humped Camel Foetus (*Camelus dromedarius*)

1Imam, J., 1Hambolu, J.O., 1Onyeanusi, B.L., 2Ayo, J.O., 1Sulaiman, M. H. and 1Nzalak, J.O.

1Department of Veterinary Anatomy, Ahmadu Bello University, Zaria-Nigeria
2Department of Veterinary Physiology, Ahmadu Bello University, Zaria-Nigeria

Abstract

The relationships between the body dimensions, age and weight in the eighty-seven foetuses were determined. Each foetus was weighed and its body dimensions were measured using a string and a measuring tape. The sexes of the foetuses were determined by observing and recording the gonad type in the ventral caudal area. The age of each foetus was determined by measuring the crown-rump length. The mean (± SEM) weight of the foetuses ranged from 50.7 ± 7.4 g - 14350 ± 3372 g. The crown-rump length and body length of the foetuses varied from 15.8 ± 1.2 cm - 104 ± 8.5 cm and 20.5 ± 1.7 cm - 137 ± 11.7 cm, respectively. The tail length and neck length ranged from 3.3 ± 0.2 cm - 24.5 ± 2.4 cm and 5.7 ± 0.5 cm - 36.9 ± 2.6 cm, respectively. The relationships between the mean crown-rump length and body length of the foetuses were highly significant (P < 0.001). The mean crown-rump length of the foetuses were significant (P < 0.001) correlated with age, body weight, body length, tail length and neck length. Body length was significantly (P < 0.001) related to age, weight, tail length and neck length. The increase in tail length to neck length occurred at a fairly constant ratio of 1:8.

Keyworda: Morphometric, Camel (*Camelus dromedarius*), Kano abattoir.

Introduction

The camel (*Camelus dromedarius*) belongs to the family, *Camelidae*. This family is divided into three genera. The old-world camels-(i) genus *Camelus* the new world camel-(ii) genus *Lama* and (iii) genus *Vicugna* (Wilson and Reeder, 2005). The mean gestation period of the camel is between 315-360 days (Puschmann, 1989) and May be up
Morphometric studies on the dromedary foetus

Imam et.al.,

covers an area of 20,131 km². Kano is located in the Northwestern part of Nigeria and out in Kano State. It is located in the deserts of the Arabian Peninsula. It is a multi-purpose animal, used for its supply of milk, meat, hides and for transport (Schwartz and Dioli, 1992; Farah, 2004; Kane et al., 2005; Kadim et al., 2008). There is paucity of information on the developmental morphology of organs in the camels, including the lung.

This study was conducted to determine the anatomical data of the camel foetus using readily available abattoir specimen.

Materials and Methods

Study area: The study was carried out in Kano State. It is located in the North-Western part of Nigeria and covers an area of 20,131 km². Kano State borders Katsina to the north-west, Jigawa State to the north-east, and Bauchi and Kaduna States to the south (Roger, 2009).

Experimental Animals: Eighty-seven foetuses were used for the study. They were collected immediately after their dam were slaughtered and the sex of each foetus was recorded.

Morphometric Studies: Foetuses were weighed to the nearest 0.1 g with weighing balance after being carefully dried with a clean towel. The following body dimensions were measured to the nearest 0.1 cm for each foetus using a string and a measuring tape.

- Crown-rump length
- Body weight
- Body length of the foetus
- Tail length
- Neck length

Foetal Age Estimation: The gestational age of each foetus was estimated using a formula described by Elwishy et al., (1981) as follows: GA = (CRL + 23.99)/0.366. Where GA = Gestational age; CRL = Crown – rump length.

Data Analyses: All recorded values were expressed as means ± standard errors of mean. The statistical package used was Graphpad prism Software, San Diego, California, USA (WWW.Graphpad.com) WWW.Graphpad.co). Values of P < 0.05 were considered significant.

Results

The age varied from 108.7 ± 3.3 days to 349.3 ± 23.3 days. The body length ranged from 20.5 ± 1.7 cm to 137 ± 11.7 cm, the crown-rump length ranged from 15.8 ± 1.2 cm to
104 ± 8.5 cm while the weight of the foetuses ranged from 50.7 ± 7.4 g to 14350 ± 3372 g.

The tail length varied from 3.3 ± 0.2 cm to 24.5 ± 2.4 cm and the neck length ranged from 5.7 ± 0.5 to 36.9 ± 2.6 cm. (Table 1). In addition to the increase in age, body length and body weight, regular increase in tail length to neck length was observed at a fairly constant ratio of 1:8 (Table 3).

The crown-rump length and body length were significantly (P < 0.001) and directly correlated. The crown-rump length of the camel foetus was significantly (P < 0.001) and positively correlated with age, body length, body weight, tail length and neck length (Table 2).

Discussion

The mean crown-rump length of the camel foetus ranging between 15.8 ± 1.2 cm to 104 ± 8.5 cm obtained in this study is less than that of 17.3 ± 0.4 cm to 116.7 ± 1.8 cm, reported by Hussein et al., (1991). The mean body length of the camel foetus, which ranged between 20.5 ± 1.7 cm to 137 ± 11.7 cm in the present study, is less than the range of 22.4 ± 0.5 cm to 154.7 ± 3.2 cm, reported by Hussein et al. (1991). The body weight of the camel foetus was 48.6 ± 4.0 g to 20933.3 ± 2547.1 g and the values were different (P < 0.05) from the mean body weight of camel foetus (50.7 ± 7.4 g to 14350 ± 3372 g) obtained in this study. The differences in the dimension obtained in the present study and that of Hussein et al. (1991) may be due to the variation in size of the animals, environmental condition and nutritional factors (Sivachelvan et al., 1996).

Body measurements steadily increased in the present study with increasing gestational age, and the crown-rump length was highly correlated (P < 0.01) with gestational age (r = 0.9546, P < 0.001).

Therefore, the developmental age may be estimated from foetus crown-rump length. In addition, since the correlation obtained between crown-rump length and body length was high, body length may also be used to estimate camel foetal age. This finding is in agreement with the findings of Elwishy et al. (1981) and Hussein et al. (1991) who obtained a highly significant correlation between gestational age and body measurements, and showed that the estimation of foetal age is possible with a fair degree of accuracy. Elwishy et al. (1981) suggested equations that were used to estimate the age of the camel foetus in days (X) from a known body dimension.

The result obtained by Hussein et al. (1991) in the one-humped camel showed that the ratio of radius to tibia
lengths indicates that the rate of the growth of the bones remains constant in relation to one another throughout the period of gestation. However, in this study, in addition to increase in the crown-rump length, body length, age and body weight, regular increase in tail length and neck length were observed at a fairly constant ratio of 1:8. The result obtained in the present study demonstrated, for the first time, the relationships between the morphometric parameters of the one-humped camel in the foetus, and that the parameters are directly related. The findings of the present study have demonstrated that the morphometric parameters of the foetus in the camel may be used to determine not only the size of the foetus, but also many morphometric anatomical parameters that are of value in the determination of the age of the foetus, crown-rump length, body length, body weight, tail length and neck length, using the regression equations obtained. Of particular clinical significance is the determination of body weight and age of the foetus using the regression equations generated from the present study. Besides the clinical value of the equations, the data obtained in the present study may be of value in forensic veterinary medicine, involving the determination of some unknown morphometric anatomical data of the foetus, especially the age in the camel.

Conclusion

Base-line anatomical data of the camel foetus on weight, body length, crown-rump length, tail length and neck length were obtained to the best of our knowledge in Nigeria. Body weight of camel foetus and other body dimension studied were highly correlated.

References

Morphometric studies on the dromedary foetus

Kamels. Tierärztliche Praxis, 9, 389-402.

*Correspondence author:
Dr. Imam, J.
E-mail: jibsimam@gmail.com,jimam@abu.edu.ng and jibsimam@yahoo.com.
+2348036194202
Morphometric studies on the dromedary foetus

Imam et al.,

Table (1): Crown-rump, Body Weight, Body Length, Tail Length and Neck Length Length of the Camel Foetus (Mean ± SEM)

<table>
<thead>
<tr>
<th>Crown-rump length Range</th>
<th>n</th>
<th>Crown-rump length (cm)</th>
<th>Age (Days)</th>
<th>Body length (cm)</th>
<th>Body weight (g)</th>
<th>Tail length (cm)</th>
<th>Neck length (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5-19</td>
<td>7</td>
<td>15.8 ± 1.2a</td>
<td>108.7 ± 3.3</td>
<td>20.5 ± 1.7</td>
<td>50.7 ± 7.4</td>
<td>3.3 ± 0.2</td>
<td>5.7 ± 0.5</td>
</tr>
<tr>
<td>20-25</td>
<td>9</td>
<td>23.1 ± 0.4a</td>
<td>128.6 ± 1.1</td>
<td>30.9 ± 1.1</td>
<td>135.6 ± 13.3</td>
<td>5.1 ± 0.2</td>
<td>8.9 ± 0.4</td>
</tr>
<tr>
<td>26-37</td>
<td>29</td>
<td>33.6 ± 0.7b</td>
<td>157.3 ± 1.9</td>
<td>43.3 ± 0.9</td>
<td>425.2 ± 29.1</td>
<td>7.0 ± 0.1</td>
<td>12.6 ± 0.4</td>
</tr>
<tr>
<td>38-44</td>
<td>14</td>
<td>42.0 ± 0.6c</td>
<td>251.6 ± 71.4</td>
<td>54.2 ± 1.0</td>
<td>766.1 ± 50.2</td>
<td>9.0 ± 0.3</td>
<td>16.1 ± 0.3</td>
</tr>
<tr>
<td>45-54</td>
<td>12</td>
<td>49.0 ± 0.9d</td>
<td>199.2 ± 2.5</td>
<td>64.0 ± 1.2</td>
<td>1427 ± 123.9</td>
<td>10.3 ± 0.3</td>
<td>18.9 ± 0.5</td>
</tr>
<tr>
<td>55-65</td>
<td>5</td>
<td>61.9 ± 1.1a</td>
<td>234.4 ± 3.0</td>
<td>81.6 ± 1.7</td>
<td>2590 ± 202.1</td>
<td>13.5 ± 0.7</td>
<td>24.3 ± 1.3</td>
</tr>
<tr>
<td>66-80</td>
<td>5</td>
<td>71.1 ± 2.2a</td>
<td>259.6 ± 5.7</td>
<td>93.2 ± 3.0</td>
<td>4360 ± 567.3</td>
<td>16.4 ± 1.1</td>
<td>27.7 ± 1.0</td>
</tr>
<tr>
<td>81-90</td>
<td>3</td>
<td>83.2 ± 1.4c</td>
<td>293.6 ± 3.6</td>
<td>109.7 ± 2.0</td>
<td>7283 ± 683.9</td>
<td>20.5 ± 0.9</td>
<td>33.1 ± 1.0</td>
</tr>
<tr>
<td>91-125</td>
<td>3</td>
<td>104 ± 8.5f</td>
<td>349.3 ± 23.3</td>
<td>137 ± 11.7</td>
<td>14350 ± 3372</td>
<td>24.5 ± 2.4</td>
<td>36.9 ± 2.6</td>
</tr>
</tbody>
</table>

a,b,c,d,e,f = Values with different superscript letters within the same column are statistically (P < 0.05) significant.

n = Number of camel foetuses sampled

Table (2): Relationships between Age and Body Dimension of the Foetus of the one-humped Camel (Camelus dromedarius) (n = 87)

<table>
<thead>
<tr>
<th>Correlated parameters</th>
<th>Correlation coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crown-rump length and age</td>
<td>0.9546***</td>
</tr>
<tr>
<td>Crown-rump length and body length</td>
<td>0.9999***</td>
</tr>
<tr>
<td>Crown-rump length and body weight</td>
<td>0.9170***</td>
</tr>
<tr>
<td>Crown-rump length and tail length</td>
<td>0.9968***</td>
</tr>
<tr>
<td>Crown-rump length and neck length</td>
<td>0.9948***</td>
</tr>
<tr>
<td>Body length and age</td>
<td>0.9523***</td>
</tr>
<tr>
<td>Body length and weight</td>
<td>0.9186***</td>
</tr>
<tr>
<td>Body length and tail length</td>
<td>0.9971***</td>
</tr>
<tr>
<td>Body length and neck length</td>
<td>0.9947***</td>
</tr>
<tr>
<td>Body length and crown-rump length</td>
<td>0.9999***</td>
</tr>
</tbody>
</table>

*** = P < 0.001
Table (3): Length of the Neck and Tail and the Neck:Tail Ratio during the Developmental Stages of One-humped Camel (*Camelus dromedarius*) Foetus.

<table>
<thead>
<tr>
<th>Range of Crown-rump Length (cm)</th>
<th>N</th>
<th>Neck (cm)</th>
<th>Tail (cm)</th>
<th>Neck:Tail Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5 – 19</td>
<td>7</td>
<td>5.7 ± 0.5</td>
<td>3.3 ± 0.2</td>
<td>1.7</td>
</tr>
<tr>
<td>20 – 25</td>
<td>9</td>
<td>5.1 ± 0.2</td>
<td>8.9 ± 0.4</td>
<td>1.7</td>
</tr>
<tr>
<td>26 – 37</td>
<td>29</td>
<td>7.0 ± 0.1</td>
<td>12.6 ± 0.4</td>
<td>1.8</td>
</tr>
<tr>
<td>38 – 44</td>
<td>14</td>
<td>9.0 ± 0.3</td>
<td>16.1 ± 0.3</td>
<td>1.8</td>
</tr>
<tr>
<td>45 – 54</td>
<td>12</td>
<td>10.3 ± 0.3</td>
<td>18.9 ± 0.5</td>
<td>1.8</td>
</tr>
<tr>
<td>55 – 65</td>
<td>5</td>
<td>13.5 ± 0.7</td>
<td>24.3 ± 1.3</td>
<td>1.8</td>
</tr>
<tr>
<td>66 – 80</td>
<td>5</td>
<td>16.4 ± 1.1</td>
<td>27.7 ± 1.0</td>
<td>1.7</td>
</tr>
<tr>
<td>81 – 90</td>
<td>3</td>
<td>20.5 ± 0.9</td>
<td>33.1 ± 1.0</td>
<td>1.6</td>
</tr>
<tr>
<td>91 – 125</td>
<td>3</td>
<td>24.5 ± 2.4</td>
<td>36.9 ± 2.6</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Note: * = Values with different superscript letters within the same column are statistically (P < 0.05) significant.
Determination of the Proportions of Muscle Fibre Types from Selected Muscles of the Forelimb: A Comparative Study of Cattle (*Bos taurus indicus*) and One-humped Camel (*Camelus dromedaries*)

S.A. Hena*\(^1\), M.L. Sonfada\(^2\), S.A. Shehu\(^2\), M. Jibir\(^3\), A. Bello\(^2\), J.O. Omirinde\(^1\) and I.J. Gosomji\(^1\)

\(^1\)Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Jos, Jos - Nigeria.
\(^2\)Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto - Nigeria.
\(^3\)Department of Animal Science, Faculty of Agriculture, Usmanu Danfodiyo University, Sokoto, Nigeria.

Received and accepted for publication March 2018

Abstract

A total number of fifty forelimbs comprising twenty-five male dromedary camels (*Camelus dromedaries*) and those of male cattle, Zebu type (*Bos taurus indicus*) within the ages of 6 months, 1 year, 3 years, 5 years and 7 years, were purchased from Sokoto Municipal Modern abattoir. Selected muscle samples (1 cm\(^2\)) from the forelimbs of both cattle and camels were taken from the middle part of the muscle bellies (from the biceps brachii, triceps brachii and deltoideus), fixed in Bouin’s solution and prepared for histochemical analyses.

The photomicrographs obtained from the biceps brachii, deltoideus and triceps brachii among both cattle and camels demonstrated the morphology of the different fibre types (type I, type IIA and type IIB). Muscle fibre types showed different proportions. Even though the overall mean proportion of muscle fibre type I, type IIA and type IIB could not present any significant (p>0.05) differences between the camel and the cattle looking at it holistically.

As revealed in this work, the effects of the interactions of species versus age, species versus muscle and muscle versus age on the proportion of muscle fibre type I revealed that the deltoideus muscle of 1 year old camel had significantly (p<0.05) higher proportion. Type IIA muscle fibre obtained from the deltoideus muscle of 5-year-old camel showed a significant (p<0.05) difference.

Animal species in this issue

One-humped came (Camelus dromedaries)

Kingdom: Animalia, Phylum: Chordata, Class: Mammalia, Order: Artiodactyla. Family: Camelidae, Genus: *Camelus*

Camel is an even-toed ungulate within the genus *Camelus*, bearing distinctive fatty deposits known as humps on its back. There are two species of camels: the dromedary or Arabian camel has a single hump, and the Bactrian camel has two humps. They are native to the dry desert areas of West Asia, and Central and East Asia, respectively. Both species are domesticated to provide milk and meat, and as beasts of burden.

The average life expectancy of a camel is 40 to 50 years. A fully grown adult camel stands 1.85 m at the shoulder and 2.15 m at the hump. The hump rises about 30 inches (76.20 cm) out of its body. Camels can run at up to 65 km/h (40 mph) in short bursts and sustain speeds of up to 40 km/h (25 mph).

Fossil evidence indicates that the ancestors of modern camels evolved in North America during the Palaeogene period, and later spread to most parts of Asia. Humans first domesticated camels before 2000 BC.

Camels are able to withstand changes in body temperature and water content that would kill most other animals. Their temperature ranges from 34 °C at night and up to 41 °C during the day, and only above this threshold will they begin to sweat.