Abstract
Double outlet right ventricle (DORV) and double outlet left ventricle (DOLV) are congenital conditions where the great arteries (aorta and pulmonary trunk) both arise mostly or completely from the right or left ventricle. The limited body of evidence about this condition in cats and dogs suggests it is very rare. There does not seem to be a predisposition in certain breeds. The condition is diagnosed usually early and life is usually medically treated. Despite surgery being a viable option in humans, it is rarely performed in animals. Unfortunately, there is still significant mortality regardless of treatment strategy. Additionally, a lot of animals are not treated at all. Further research is necessary to obtain more insights in the epidemiology of the condition and to assess the different treatment strategies. Retrospective studies should be considered, since prospective trials may be unfeasible due to the rarity of the condition. Subsequently, standard treatment protocols could be developed.

Keywords: Double outlet ventricle, Cats, Dogs, Anatomy

Introduction
Congenital heart anomalies have been well described in both cats and dogs (Hunt et al., 2006). Such anomalies occurring in both species include patent ductus arteriosus (Broaddus and Tillson, 2010; A Bascuñán et al., 2016), valve dysplasia (Amberger et al., 1989; Kuijpers and Szatmári, 2011) and double outlet ventricles (Chetboul et al. 2020). Double outlet right ventricle (DORV) and double outlet left ventricle (DOLV) are congenital conditions where the great arteries (aorta and pulmonary trunk) both arise mostly or completely from the right or left ventricle, respectively (Lee et al., 2010). In humans, DORV has been mentioned to make up 1-3% of all cases of congenital heart defects (Obler et al., 2008). These defects are almost always accompanied by a ventricular septal defect (VSD) (Takeuchi and Pedro J., 2000), which allows blood to flow between both ventricles and therefore enables blood crossing be-
Congenital anomalies in cats and dogs.

Jelle Stans

between the systemic and pulmonary circulation. Treatment of DORV often includes surgery (Wu et al., 2017). Like in humans, double outlet ventricles have also been observed in different animals, including dogs and cats (Chetboul et al. 2020). The literature of this condition in veterinary medicine is however very sparse. Therefore, there is still much to be learned about the epidemiology and treatment of these anomalies in companion animals, including cats and dogs. No review of the clinical aspects of this anatomical defect has currently been published. Therefore, this review aims to summarize the clinical aspects regarding canine and feline DORV and DOLV from the available literature. Additionally, proposals for future research are formulated.

Literature search and inclusion

To identify relevant literature in cats and dogs, the Medline database was searched using the “(double outlet ventricle) AND (dogs [MeSH Terms])” and “(double outlet ventricle) AND (cats, domestic [MeSH Terms])” search strings, yielding five and six results respectively. Three publications were included for the dogs. One publication was excluded because it concerned iatrogenic DOLV and another publication was excluded because it concerned a human patient. Two other relevant publications were identified through an internet search using the “double outlet ventricle dog” string. For cats, four publications were included. One publication was excluded because it concerned double-chambered right ventricle and two were excluded because they could not be sourced. One additional publication was identified during an internet search using the “double outlet ventricle cat” string. Data extracted from the included publications is shown in table 1 and 2.

For both species, the literature identified consisted solely of case reports and case series. Eight cases of dogs with double outlet ventricles were identified (Vos et al., 1982; Bedolla-Alva et al., 2010; Lee et al., 2010; Koo et al., 2016; Chetboul et al., 2020). For cats, only three case reports were identified (Abduch et al., 2003; Hwang et al., 2016; Chetboul et al., 2020). Figure 1 shows a representative illustration of the double outlet right ventricles identified.

Animal characteristics

For both species, a wide variety of breeds were described to suffer from the condition. Dog breeds that were affected included, amongst others, a chihuahua (Bedolla-Alva et al., 2010), a Samoyed (Chetboul et al. 2020) and two poodles (Vos et al., 1982; Chetboul et al. 2020). The affected cats’ breeds were a Persian (Abduch et al., 2003), a British shorthair (Hwang et al., 2016) and a Scottish fold (Chetboul et al., 2020). Based on this limited information, it could be hypothe-
Congenital anomalies in cats and dogs.

sized that there is no strong predisposition for this condition in certain breeds. Likewise, there was an almost equal distribution between male and female animals, suggesting that sex does not strongly influence predisposition.

All animals were relatively young when diagnosed. The age at diagnosis for the dogs ranged from three months to two years. However, most of the animals were below one year of age. For cats, the age at diagnosis ranged from one to ten months. Based on these observations, it can be assumed that double outlet ventricles manifest with symptoms that occur early in life.

Based on the cases identified, it seems that in cats and dogs DORV is more common than DOLV. Only one dog with DOLV was described, while no cats were reported to suffer from DOLV. However, this will need to be confirmed by further research.

Concurrent defects

All animals that suffered from a double outlet ventricle had concurrent defects. In the identified case reports, all animals also had a VSD. This has also been described in humans (Wu et al., 2017) and allows blood to flow between the systemic and pulmonary circulation despite both great arteries originating from the same ventricle. It can be assumed that without a VSD, double outlet ventricle would almost be invariably lethal.

In some cases, the double outlet ventricle was assumed to be part of the tetralogy of Fallot (Vos et al., 1984; Bedolla-Alva et al., 2010). This means that additionally a pulmonary stenosis, overriding aorta, VSD and right ventricular hypertrophy were present. Other concurrent defects that were described included aortic stenosis (Chetboul et al. 2020) and patent ductus arteriosus (Chetboul et al. 2020).

Symptoms

Exercise intolerance was a symptom that occurred in nearly all cases that were described. This was frequently accompanied by cyanosis (of mucous membranes) and tachypnea. Other symptoms that were described included dyspnea (Lee et al., 2010), lethargy (Chetboul et al. 2020) and breathing difficulties (Bedolla-Alva et al., 2010). In selected cases, long-term effects such as growth retardation were described (Vos et al., 1984; Chetboul et al. 2020).

Diagnosis

In most cases, bloodwork and cardiac examinations, such as electrocardiography, were performed after the animals presented with symptoms. Afterwards, the final diagnosis was almost always made using echocardiography. In one instance, the diagnosis was only confirmed post-mortem (Vos et al., 1982). Other imaging techniques that were used in multiple instances were thoracic radiography...
Congenital anomalies in cats and dogs.

(Abduch et al., 2003; Hwang et al., 2016) and (cardiac gated) computed tomography (Koo et al., 2016; Chetboul et al., 2020).

No standard diagnostic guidelines have been developed for DORV or DOLV. This can probably be partly attributed towards the rarity of the anomaly. It is however clear that even without these guidelines, the diagnostic workflow was very similar between the different cases. Therefore, it may not be necessary to standardize the approach at this time. Further research could investigate whether there are strategies to discover a double outlet ventricle before it becomes symptomatic. This may in turn improve outcome when treatment can be initiated earlier.

Treatment and outcomes

In humans, double outlet ventricle is often amenable to surgery and treated this way (Wu et al., 2017). In the identified case reports, surgery was only attempted on one dog (Chetboul et al. 2020) and one cat (Abduch et al., 2003). Unfortunately, in both cases, the animal died during or very shortly after surgery. Additionally, one cat died during preparation for angiography (Vos et al., 1984). Due to the relative effectiveness of surgery in humans, further research should be conducted. Why surgery is not often conducted in veterinary patients and whether the poor outcomes currently described are representative.

Medical treatment was used in several cases (Abduch et al., 2003; Lee et al., 2010; Hwang et al., 2016; Chetboul et al. 2020). Drugs that were often prescribed included spironolactone and furosemide. Of the six animals that were medically treated, four were alive at the time of publication of the specific case report. It is clear that there was variation in the treatment schedules of the different animals. No standard treatment guidelines are currently available. Therefore, retrospective research should be performed to assess the efficacy and safety of the different medical treatment strategies. Based on these results, key opinion leaders should discuss to develop standardized treatment schedules, if appropriate. Prospective studies, such as dedicated clinical trials, may not be feasible due to the rarity of the condition.

Five of the dogs with a double outlet ventricle did not receive treatment. Only one of these animals survived. This could suggest that without treatment, the prognosis of the condition is relatively poor. In the case reports, little information was provided on why no surgical or medical treatment was initiated. Further research could investigate what the reasons for this are.

Conclusion

The small number of described cases and the lack of studies with a high
internal validity makes it difficult to make general conclusions. However, it seems that the condition is rare and that no breeds have a specific predisposition. The anomaly is usually diagnosed early in life through the use of echocardiography. After being identified, different treatment strategies are used to mitigate double outlet ventricle, including surgery and medical treatment. A lot of animals are not treated, however. Unfortunately, regardless of the treatment strategy, this condition is very often fatal in cats and dogs.

Acknowledgements
The author would like to thank Eline Daems for the illustration.

Conflict of interest
The author declares no conflict of interest.

References

Congenital anomalies in cats and dogs.

https://doi.org/10.1016/j.jvc.2020.08.005

Author address
Jelle.stans@igdore.org
Table 1: Data extracted from the included papers about canine double outlet ventricle

<table>
<thead>
<tr>
<th>Reference</th>
<th>Age</th>
<th>Breed</th>
<th>Sex</th>
<th>Right/Left</th>
<th>Concurrent defects</th>
<th>Symptoms</th>
<th>Diagnosis</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedolla-Alva et al., 2010</td>
<td>4 months</td>
<td>Chihuahua</td>
<td>Female</td>
<td>Right</td>
<td>left ventricle hypoplasia Tetrology of Fallot</td>
<td>Weakness Breathing difficulty Orthopnea Sneezing</td>
<td>Radiography Echocardiography</td>
<td>None</td>
<td>Fatal</td>
</tr>
<tr>
<td>Chetboul et al., 2020</td>
<td>2 months</td>
<td>Poodle</td>
<td>Male</td>
<td>Right</td>
<td>Ventricular septal defect</td>
<td>Exercise intolerance Intermitent tachypnea</td>
<td>Echocardiography</td>
<td>Spironolactone (0.5 mg/kg/day) Omega-3 fatty acids</td>
<td>Alive at 53 months</td>
</tr>
<tr>
<td>Chetboul et al., 2020</td>
<td>1 year</td>
<td>Yorkshire Terrier</td>
<td>Female</td>
<td>Right</td>
<td>Ventricular septal defect Right ventricular hypertrophy Patent ductus arteriosus Mitral dysplasia</td>
<td>Exercise intolerance Lethargy Shortness of breath Mucous cyanosis Coughing Tachypnea Delayed growth</td>
<td>Echocardiography</td>
<td>None</td>
<td>Fatal (Died 24 hours after diagnosis)</td>
</tr>
<tr>
<td>Chetboul et al., 2020</td>
<td>4 months</td>
<td>Samoyed</td>
<td>Male</td>
<td>Right</td>
<td>Ventricular septal defect Right ventricular hypertrophy</td>
<td>Exercise intolerance Lethargy Shortness of breath Mucous cyanosis Coughing Tachypnea Delayed growth</td>
<td>Echocardiography</td>
<td>Spironolactone (1.2 mg/kg/day per os) Surgery</td>
<td>Fatal (Died during surgery due to ventricular fibrillation)</td>
</tr>
<tr>
<td>Chetboul et al., 2020</td>
<td>3 months</td>
<td>Shetland sheepdog</td>
<td>Female</td>
<td>Right</td>
<td>Subvalvular aortic stenosis Ventricular septal defect Pulmonary trunk hypoplasia Infundibular pulmonary stenosis Interventricular septum</td>
<td>Exercise intolerance Mucoas cyanosis Delayed growth Tachypnea</td>
<td>Echocardiography</td>
<td>None</td>
<td>Fatal (Died two months after diagnosis)</td>
</tr>
<tr>
<td>Koo et al., 2015</td>
<td>2 years</td>
<td>Collie</td>
<td>Male</td>
<td>Right</td>
<td>Ventricular septal defect Right ventricular hypertrophy Complete transposition of the great arteries Pulmonary hypoplasia</td>
<td>Exercise intolerance Lingual cyanosis</td>
<td>Echocardiography</td>
<td>Cardiac-gated computed tomography (CT)</td>
<td>None</td>
</tr>
<tr>
<td>Lee et al., 2010</td>
<td>4 months</td>
<td>Maltese</td>
<td>Female</td>
<td>Right</td>
<td>Ventricular septal defect</td>
<td>Dyspnea</td>
<td>Echocardiography</td>
<td>Nifedipine (1 mg/kg, BID) Spironolactone (2 mg/kg) Enalapril (0.5 mg/kg) Amlodipine (1 mg/kg)</td>
<td>Alive</td>
</tr>
<tr>
<td>Voss et al., 1982</td>
<td>4 months</td>
<td>Toy poodle</td>
<td>Female</td>
<td>Left</td>
<td>Ventricular septal defect Pulmonic stenosis Terminology of Fallot (presumed)</td>
<td>Growth retardation Coughing Exercise intolerance Cyanosis</td>
<td>Post-mortem observation</td>
<td>None</td>
<td>Fatal (Died from cardiac arrest during preparation for angioscopy)</td>
</tr>
</tbody>
</table>
Table 2: Data extracted from the included papers about feline double outlet ventricle.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Age</th>
<th>Breed</th>
<th>Sex</th>
<th>Right/Left Concurrent defects</th>
<th>Symptoms</th>
<th>Diagnose</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abduch et al., 2003</td>
<td>20 days (1st presentation)</td>
<td>Persian</td>
<td>Male</td>
<td>Right</td>
<td>Dyspnea</td>
<td>Echocardiography</td>
<td>Propranolol (0.5 mg/kg orally three times daily)</td>
<td>Fatal (Died 8 hours after surgery from cardiac arrest)</td>
</tr>
<tr>
<td></td>
<td>5 months (2nd presentation)</td>
<td></td>
<td></td>
<td></td>
<td>Tachypnea</td>
<td>Thoracic radiography</td>
<td>Frusemide (2 mg/kg orally twice daily)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 years (3rd presentation)</td>
<td></td>
<td></td>
<td></td>
<td>Cyanosis</td>
<td></td>
<td>Sodium-restricted diet</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Persian</td>
<td>Female</td>
<td></td>
<td>Reduced growth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chetboul et al., 2020</td>
<td>6 months</td>
<td>Domestic shorthair</td>
<td>Female</td>
<td>Right</td>
<td>Dyspnea</td>
<td>Echocardiography</td>
<td>Propranolol (7.5 mg orally three times daily)</td>
<td>Alive at age of 21 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ventricular septal defect</td>
<td>Tachypnea</td>
<td>Thoracic radiography</td>
<td>Frusemide (2 mg/kg orally twice daily)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cyanosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reduced growth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hwang et al., 2016</td>
<td>10 months</td>
<td>Scottish Fold</td>
<td>Male</td>
<td>Right</td>
<td>Dyspnea</td>
<td>Echocardiography</td>
<td>Spironolactone (1 mg/kg/day)</td>
<td>Alive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ventricular septal defect</td>
<td>Tachypnea</td>
<td>Thoracic radiography</td>
<td>Atenolol (0.25 mg/cat, SID)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cyanosis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure (1): Illustration of a representative case of double outlet right ventricle with a ventricular septal defect based on the included case reports.